In [12]:
import tensorflow as tf
import numpy as np
In [2]:
a=tf.constant(5)
b=tf.constant(5)
c=a*b
with tf.Session() as sess:
print(sess.run(c))
x=c.eval()
print(c.eval())
print(x)
In [4]:
W1 = tf.ones((2,2))
W2 = tf.Variable(tf.zeros((2,2)), name="weights")
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print(sess.run(W2))
print(sess.run(W1))
In [7]:
#### Updating variable
state = tf.Variable(0, name="counter")
new_value = tf.add(state, tf.constant(1))
update = tf.assign(state, new_value)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print(sess.run(state))
for _ in range(3):
sess.run(update)
print(sess.run(state))
In [10]:
###Fetching Variable State (1)
input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)
with tf.Session() as sess:
result = sess.run([mul, intermed])
print("result is :"+str(result))
In [14]:
### Convert numpy to tflow
##Inputting Data
a = np.zeros((3,3))
ta = tf.convert_to_tensor(a)
with tf.Session() as sess:
print(sess.run(ta))
In [16]:
### Placeholders and Feed Dictionaries (2)
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
In [19]:
#### Placeholders and Feed Dictionaries (2)
# pass values to inputs uing feed dictionary
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))
In [20]:
#### Placeholders and Feed Dictionaries (2)
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))
In [ ]:
### Scope of variables
with tf.variable_scope("foo"):
with tf.variable_scope("bar"):
v = tf.get_variable("v", [1])
# assert v.name == "foo/bar/v:0
with tf.variable_scope("foo"):
v = tf.get_variable("v", [1])
tf.get_variable_scope().reuse_variables()
v1 = tf.get_variable("v", [1])
assert v1 == v
In [45]:
import numpy as np
import seaborn
import matplotlib.pyplot as plt
% matplotlib inline
# Define input data
X_data = np.arange(100, step=.1)
y_data = X_data + 20 * np.sin(X_data/10)
# Plot input data
plt.scatter(X_data, y_data)
Out[45]:
In [46]:
# Define data size and batch size
n_samples = 1000
batch_size = 1000
# Tensorflow is finicky about shapes, so resize
X_data = np.reshape(X_data, (n_samples,1))
y_data = np.reshape(y_data, (n_samples,1))
# Define placeholders for input
X = tf.placeholder(tf.float32, shape=(batch_size, 1))
y = tf.placeholder(tf.float32, shape=(batch_size, 1))